Online phenotype discovery based on minimum classification error model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

Minimum Error Classification Clustering

Clustering is the problem of identifying the distribution of patterns and intrinsic correlations in large data sets by partitioning the data points into similarity classes. In this paper, we study on the problem of clustering categorical data, where data objects are made up of non-numerical attributes. We propose MECC (Minimum Error Classification Clustering), an alternative technique for categ...

متن کامل

Minimum classification error (MCE) model adaptation of continuous density HMMS

In this paper, a framework of minimum classification error (MCE) model adaptation for continuous density HMMs is proposed based on the approach of "super" string model. We show that the error rate minimization in the proposed approach can be formulated into maximizing a special ratio of two positive functions, and from that a general growth transform algorithm is derived for MCE based model ada...

متن کامل

A statistical model-based voice activity detection employing minimum classification error technique

In this paper, we apply a discriminative weight training to a statistical model-based voice activity detection (VAD). In our approach, the VAD decision rule is expressed as the geometric mean of optimally weighted likelihood ratios (LRs) based on a minimum classification error (MCE) method. That approach is different from that of previous works in that different weights are assigned to each fre...

متن کامل

Speaker identification using minimum classification error training

In this paper we use a Minimum Classification Error (MCE) training paradigm to build a speaker identification system. The training is optimized at the string level for a text-dependent speaker identification task. Experiments performed on a small set speaker identification task show that MCE training can reduce closed-set identification errors by up to 20-25% over a baseline system trained usin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2009

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2008.09.032